Mass Loss Evolution and the Formation of Detached Shells around TP-AGB Stars
نویسندگان
چکیده
Context. The origin of the so called ’detached shells’ around AGB stars is not fully understood, but two common hypotheses state that these shells form either through the interaction of distinct wind phases or an eruptive mass loss associated with a He-shell flash. We present a model of the formation of detached shells around thermal pulse asymptotic giant branch (TP-AGB) stars, based on detailed modelling of mass loss and stellar evolution, leading to a combination of eruptive mass loss and wind interaction. Aims. The purpose of this paper is first of all to connect stellar evolution with wind and mass loss evolution and demonstrate its consistency with observations, but also to show how thin detached shells around TP-AGB stars can be formed. Previous attempts to link mass loss evolution with the formation of detached shells were based on approximate prescriptions for the mass loss and have not included detailed modelling of the wind formation as we do here. Methods. Using stellar parameters sampled from an evolutionary track for a 2M⊙ star, we have computed the time evolution of the atmospheric layers and wind acceleration region during a typical thermal pulse with detailed radiation hydrodynamical models including dust formation. Based on these results, we simulate the subsequent circumstellar envelope (CSE) evolution using a spherical hydrodynamic model. Results. We find that existing simple mass loss prescriptions all suggest different mass loss evolutions and that they differ from our detailed wind modelling. The most important factor for the formation of a detached shell is the wind velocity evolution which has a strong impact on the wind interaction and the resulting pile-up of matter. Our CSE model shows that a thin shell structure may be formed as a consequence of a rather short phase of intense mass loss in combination with a significant variation in the wind velocity, as obtained by our wind models. This situation can only be obtained for a limited range of amplitudes for the piston boundary used in the dynamic atmosphere models. Conclusions. The combined mass loss eruption and wind interaction scenario for the formation of detached shells around AGB stars (suggested by previous work) is confirmed by the present modelling. Changes in mass loss rate and wind velocity due to a He-shell flash are adequate for creating distinct wind phases and a ’snow plow effect’ that is necessary to form a geometrically thin detached shell. The derived properties of the shell (i.e. radius, thickness and density) are more or less consistent with existing observational
منابع مشابه
On the origin of thin detached gas shells around AGB stars Insights from time-dependent hydrodynamical simulations
We have applied two different computer codes to study the time-dependent hydrodynamics of circumstellar gas/dust shells of AGB stars in their final stages of evolution. A two-component radiation hydrodynamics code is designed to model a stellar wind driven by radiation pressure on dust grains. Combined with detailed stellar evolution calculations, this approach allows us to simulate the dynamic...
متن کاملOn the Formation of Multiple-shells around Asymptotic Giant Branch Stars
Two types of models for the formation of semi-periodic concentric multiple shells (M-shells) around asymptotic giant branch (AGB) stars and in planetary nebulae are compared against observations. Models that attribute the M-shells to processes in an extended wind acceleration zone around AGB stars result in an optically thick acceleration zone, which reduces the acceleration efficiency in outer...
متن کاملA double dust shell surrounding the carbon star UAntliae
We have investigated the N-type carbon star U Ant in high resolution IRAS images. We find that the star shows two extended dust shell components and that these two shells are also clearly present in the original survey scan data. We have fitted a double dust shell model with spherical symmetry to the data to obtain the physical quantities of the shells. The inner dust shell component is related...
متن کاملProperties of detached shells around carbon stars Evidence of interacting winds
The nature of the mechanism responsible for producing the spectacular, geometrically thin, spherical shells found around some carbon stars has been an enigma for some time. Based on extensive radiative transfer modelling of both CO line emission and dust continuum radiation for all objects with known detached molecular shells, we present compelling evidence that these shells show clear signs of...
متن کاملSolar-like Cycle in Asymptotic Giant Branch Stars
I propose that the mechanism behind the formation of concentric semi-periodic shells found in several planetary nebulae (PNs) and proto-PNs, and around one asymptotic giant branch (AGB) star, is a solar-like magnetic activity cycle in the progenitor AGB stars. The time intervals between consecutive ejection events is ∼ 200 − 1, 000 yrs, which is assumed to be the cycle period (the full magnetic...
متن کامل